

Современный подход к Grid-технологиям: проект Grid Programming Environment

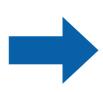
Александр Лукичев, Игорь Одинцов, Дмитрий Петров, Валерий Шорин

alexander.s.lukichev@intel.com

Grid-вычисления и Grid-технологии

Grid-вычисления — это один из методов распределенных вычислений, базирующийся на идеях использования распределенных процессорных мощностей, приложений, данных, систем хранения и сетевых ресурсов.

• В основу современного понимания Grid-технологий ставится следующий принцип: пользователь не должен задумываться о том, на каком физическом компьютере хранятся данные и исполняются программы.


В задачу программного обеспечения Grid-системы входит обеспечение соответствующего уровня абстракции, а также решение возникающих в связи с этим вопросов безопасности, надежности и поиска ресурсов.

Интерес к Grid есть практически у всех лидирующих технологических компаний (IBM, HP, Sun, Intel, ...)

Мотивация разработки (1)

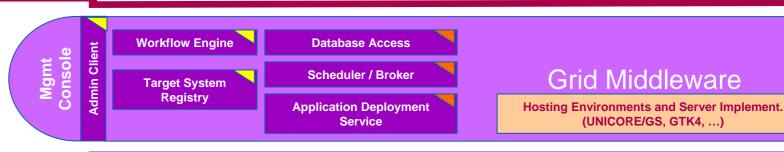
- •На данный момент в различных исследовательских проектах разработано большое количество компонентов Grid, относящихся к категории Middleware.
- •Однако не существует одного единственного универсального решения, и поэтому важной задачей является проблема взаимодействия и интеграции между различными реализациями. Успешность решения этой задачи определит успех всей Grid-технологии.
- •Пользователи должны иметь возможность использовать свои приложения на Grid-компонентах без изменений кода, которое может потребоваться при переходе на новую компоненту или новую технологию.

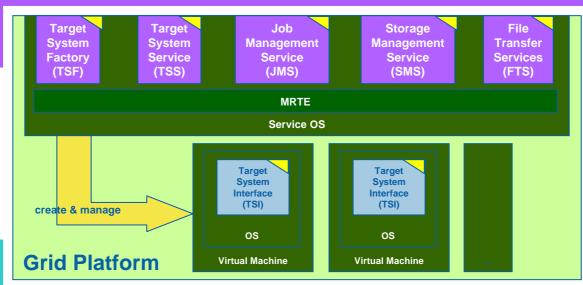


Необходим высокоуровневый инструментарий для работы с Gridприложениями, основанный на стандартах

Мотивация разработки (2)

- •Одной из важных проблем развития Grid-технологий до сих пор являлась проблема наполнения Grid-систем приложениями.
- •Трудности возникали в связи с тем, что Grid для многих до сих пор оставался скорее инструментом для научных исследований, и разработкой соответствующего программного обеспечения в основном занимались люди, более близкие к прикладным областям, нежели к современному системному программированию.
- (Еще раз, как следствие, отметим, что Grid-системы долгое время действовали вне рамок каких-либо общепринятых стандартов)


Необходим высокоуровневый инструментарий, облегчающий перенос приложений на Grid-системы

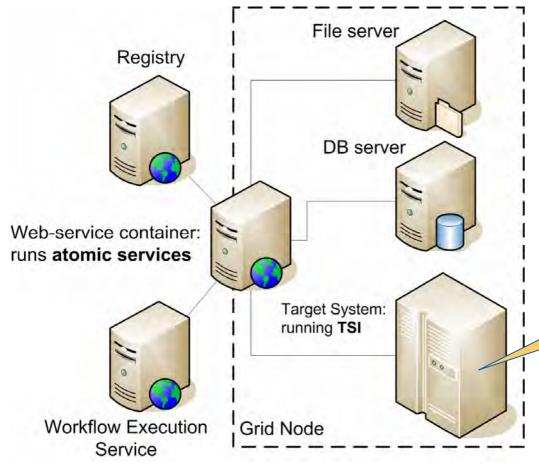

Архитектура GPE

Applications Application **Application Client** Web portals **Remote File** Manager Programming Layer **Expert Client GridBeans**

Grid Application I/F (WSRF, JSDL, ...)

Grid Platform I/F (WSRF, WSDM, **JSDL**, ...)

Grid **Platform**


H/W Platform I/F (CIM & WS-based)

= GPE components under development

= GPE components (not state)

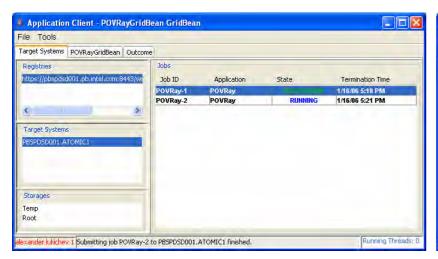
Конфигурация вычислительного узла

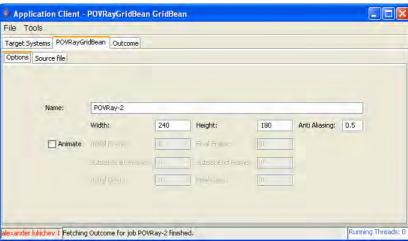
Элементы узла:

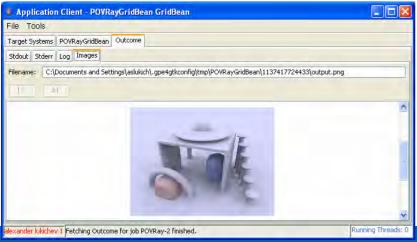
- ✓ высокопроизводительная ЭВМ;
- √сервер БД;
- ✓ файловый сервер;
- √контейнер web-сервисов.

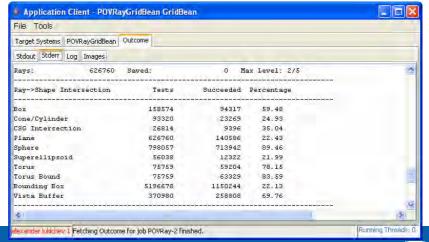
Классические вычислительные приложения

В GPE предусмотрена абстрактная спецификация вычислительных заданий, что позволяет скрыть информацию о конкретном приложении и конфигурации системы

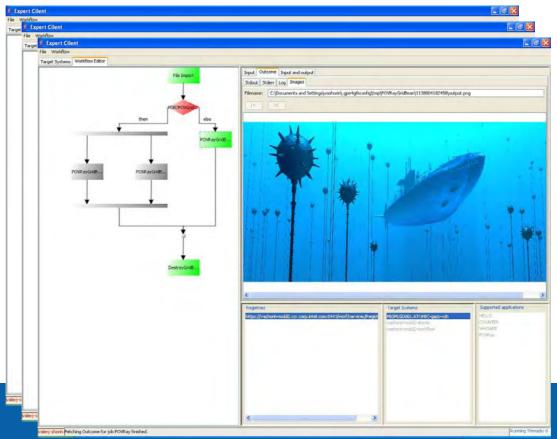

Концепция GridBeans


- □ GridBeans блоки для построения пользовательских приложений □ Спектр выполняемых действий: от простейших атомарных операций до произведения сложных многоступенчатых расчетов □ GridBean объединяет в себе компоненту бизнес-логики и набор графических интерфейсов пользователя для использования в различных средах:
 - ➤ Application Client (простейшие пользовательские приложения, возможно использование в мобильных устройствах)
 - Expert Client (пользовательские приложения произвольной сложности)
- ➤ Web-портал (доступ с помощью Интернет-броузера)
 Один и тот же GridBean может быть использован в различных средах!




Application Client

□Возможно использование только одного GridBean в один момент времени □Простейший интерфейс, удобен для решения серий однотипных задач



Expert Client

- □Возможно построение сложных бизнес-процессов из GridBeans
- □Может быть использован для решения произвольных задач пользователя

Варианты использования GridBeans

Вариант 1: Вычислительная задача

Вариант 2: Служебный GridBean

Вариант 3: Составной GridBean

Вариант 4: Установка соединения

Вариант 5: Комплексный GridBean

Вариант 1: Вычислительная задача

GridBean используется как удобный графический интерфейс пользователя к одношаговому вычислительному приложению.

- ▶Пользователь заполняет поля ввода входных данных.
- ➤При выполнении операции "Submit" компонента бизнес-логики GridBean генерирует описание задания для удаленной системы.
- ➤После окончания выполнения задания результаты визуализируются соответствующей компонентой GridBean.

Описание задания состо	из:
□Имени и версии п	риложения
□Именованных пар	раметров приложения
□Адресов входных	файлов (data stage-in)
□Адресов выходнь	іх файлов (data stage-out)
Порядок исполнения зад	цания:
□Генерация запуск	ающего скрипта по шаблону с использованием
переданных параме	этров
□Импорт входных о	райлов
□Исполнение зада	ния
□Экспорт выходны	х файлов

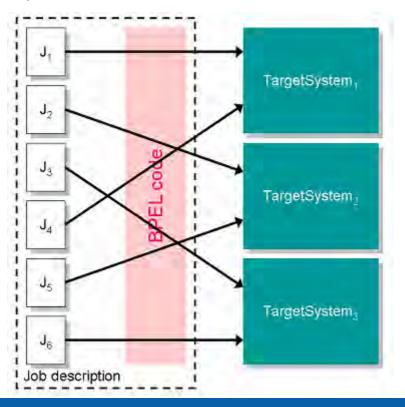
Вариант 2: Служебный GridBean

В данном случае GridBean на основе значений, введенных пользователем, генерирует элемент кода на языке BPEL. Этот код либо исполняется отдельно с помощью Workflow Execution Service, либо добавляется в код пользовательского процесса, генерируемого Expert Client.

Данный элемент кода может быть использован для:

- ❖изменения значений переменных;
- ❖генерации исключений (faults);
- **♦** вызовов веб-сервисов.

Код может включать в себя:


- □Описание и начальные значения переменных
- □Описание потока управления на подмножестве языка BPEL, включающем в себя:
 - ✓ Вызовы web-сервисов с поддержкой настроек установок безопасности и WSRF
 - ✓ Последовательное и параллельное исполнение операторов
 - √Присваивания с использованием запросов на языке XPath 1.0
 - **√**Циклы
 - √Условные операторы
 - ✓ Обработку исключений

Вариант 3: Составной GridBean

С точки зрения реализации не отличается от *Сервисного GridBean*. Однако отлична область применения.

Данный GridBean позволяет создавать составные задания (процессы). При этом он может быть использован в Application Client.

Описания конкретных вычислительных заданий на языке JSDL либо заготовлены заранее, либо вычисляются во время исполнения процесса.

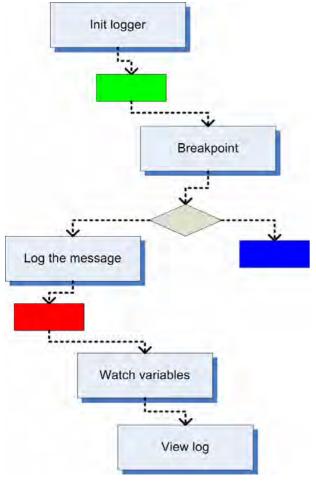
Запуск задания происходит в форме последовательности вызовов атомарных web-сервисов.

Вариант 4: Установка соединения

Еще одной задачей для GridBeans может быть прием или передача потоков данных по каналу, управляемому web-сервисами (grid-сервисами).

□ GridBean также формирует задание для Workflow Execution Service, которое состоит в вызове определенных операций некоторого web-сервиса для создания такого канала. □ Результатом такого запроса является информация об идентификации канала передачи данных. □ С использованием этой информации элементы управления компоненты визуализации результатов GridBean предоставляют пользователю интерфейс управления данным каналом и специфичные средства обработки потока данных.

Вариант 5: Комплексный GridBean


GridBean может не только генерировать задания для Atomic Target System или Workflow Execution Service, но также и сам обращаться к grid-сервисам через клиентский интерфейс GPE (GPE Client API).

Выполняемые действия могут включать в себя:

- ❖запуск простых заданий;
- ❖просмотр и управление файлами на удаленных файловых системах;
- ❖запросы к брокеру ресурсов или информационному реестру.

Использование GridBeans для отладки процессов


С помощью GridBeans можно также отлаживать сложные процессы на Workflow Execution Service.

Для этой цели разрабатывается набор GridBeans, включающий в себя компоненты:

- ✓ ведения журнала исполнения процесса;
- √поддержки точек останова;
- ✓ просмотра и модификации значений переменных.

Входные и выходные файлы

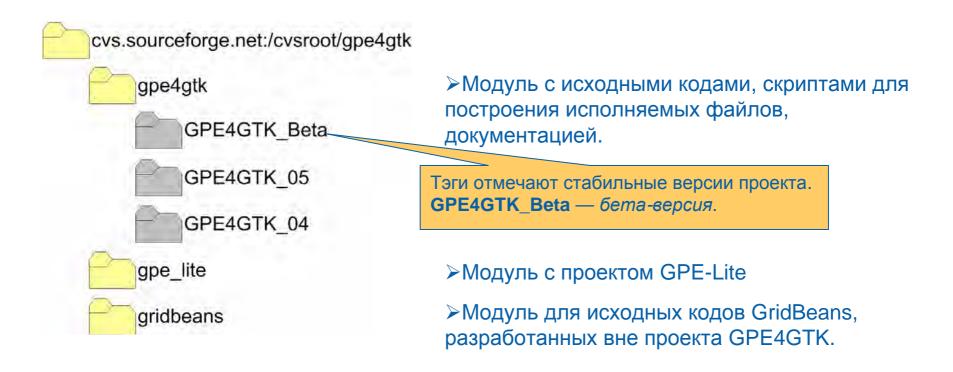
Некоторые поля могут быть объявлены как входные или выходные параметры. Входные параметры используются для указания входных файлов (или произвольных данных), получаемых с локальной машины или из других заданий

Выходные параметры используются для указания выходных файлов (или произвольных данных), которые можно передать на локальную машину или другим заданиям

Исходные тексты GPE на SourceForge

GPE является программным продуктом с открытым исходным кодом

Адрес проекта на SourceForge http://gpe4gtk.sourceforge.net


Пользователи могут использовать GPE:

- В качестве среды программирования для своих приложений
- Разработки собственных приложений на его основе

Текущее состояние: бета-версия

Структура репозитория исходных кодов

